Cattle productivity is inherently dependent upon successful breeding services (Kahinga, et., 2018). Climate –sensitive cattle breeding takes into account keeping of breeds that match with both the production environment and Agro-weather disease tolerant ecological zones (Onono et al., 2013). Although technologies, innovations and management practices (TIMPs) that promote uptake of artificial insemination (AI) breeding services have been in Kenya since 1950s, the trend for successful adoption of the same have varied across counties (Kahinga, 2015). Varying AI governance and management supportive frameworks across counties have contributed to the observed differential success in implementation within counties (Onono et., 2013). To promote unified implementation of successful of county-based AI services, evidence of adoptable best practices is required. Hence the basis of need studied counties.

RESULTS

- Determined success rates for Meru county-based AI was adoption 80% and 73% cow conception rate
- Opportunities/advantages of having Meru-county-based AI programme were indicated as provision of cheaper AI services, introduction of seeds for newer breeds and access to sexed semen
- Challenges experienced in Meru-county based AI programme were inadequate budget, unreliable fuel for technicians and lack of policies to create a revolving funds
- Meru’s adoptable TIMPs for a successful county-based AI were indicated as provision of adequate number of trained inseminators, field facilitation and extension services, provision of subsidized semen, research-based breeding services, and adequate monitoring and evaluation program
- Tharaka-Nithi’s actors’ perceived adoption of a county-based AI programme was pegged on availability of policies for filed facilitation, provision of subsidized semen and provision of AI technicians
- The actors in Tharaka-Nithi felt the county had not put in place adequate supportive institutional frameworks for initiation of programme

DISCUSSION

- Based on Meru county-based AI programme evidence on best practices for implementation, it is clear this could inform policy on introduction of a similar programmes in Tharaka-Nithi County ad beyond in Kenya as others have suggested previously (Kahinga, 2015).
- Pilot-tested AI TIMPs for new breed introduction and access to cheaper sexed semen as practiced in Meru-county-based demonstrated that such TIMPs could be drivers for successfully implementation of County-based AI programme in Tharaka-Nithi county and other counties (Kahinga et., 2018).
- The Tharaka-Nithi’s actors’ evidence on basis for willingness to adopt the county-based AI programme as long as there are supportive institutional frameworks suggest a need to involve actors before introduction of the programmes (Onono et al., 2013).
- Evidence of identified TIMPs and policies for introduction the programmes require consideration

CONCLUSION

- Evidence-based upscale of pilot-tested AI services TIMPs could be used to enhance sustainability of introduced county-based breeding services in Kenya

References
Kahinga, D. N. (2018), Adoption of assisted reproductive technologies and subaerial cattle breed and their impact on household farm income in Nairok and Kajado counties of Kenya (Doctoral dissertation, Egerton University).

My sincere gratitude extends to the University of Nairobi for a scholarship opportunity to pursue my Masters program. I also thank the world bank and KCSAP for funding my project. Special thanks to my supervisors, Prof. Henry Mutembei and Dr. Ambrose Kipyegon for the support.